企业动态
  • 捷报!新合生物以8项全满分成绩通过2020年NCCL室间质评

    未来,新合生物将充分发挥专业技术优势,为肿瘤临床检测及治疗贡献力量。

  • Development of a Cationic Polymeric Micellar Structure with Endosomal Escape Capability Enables Enhanced Intramuscular Transfection of mRNA-LNPs

    The endosomal escape of lipid nanoparticles (LNPs) is crucial for efficient mRNA-based therapeutics. Here, we present a cationic polymeric micelle (cPM) as a safe and potent co-delivery system with enhanced endosomal escape capabilities. Methods: We synthesized a cationic and ampholytic di-block copolymer, poly (poly (ethylene glycol)4-5 methacrylatea-co-hexyl methacrylateb)X-b-poly(butyl methacrylatec-co-dimethylaminoethyl methacrylated-co-propyl acrylatee)Y (p(PEG4-5MAa-co-HMAb)X-b-p(BMAc-co-DMAEMAd-co-PAAe)Y), via reversible addition–fragmentation chain transfer polymerization.

  • 抗癌新征程|新合生物新抗原疫苗临床试验正式启动

    新合生物期待通过本项临床试验,进一步观察并确认基于肿瘤新抗原疫苗在治疗中晚期胃癌、食管癌的治疗效果,帮助受试者延长病情稳定性及生存期、提升生活质量。

  • SIGANEO: Similarity network with GAN enhancement for immunogenic neoepitope prediction

    Target selection of the personalized cancer neoantigen vaccine, which is highly dependent on computational prediction algorithms, is crucial for its clinical efficacy. Due to the limited number of experimentally validated immunogenic neoepitopes as well as the complexity of neoantigens in eliciting T cell response, the accuracy of neoepitope immunogenicity prediction methods requires persistent efforts for improvement. We present a deep learning framework for neoepitope immunogenicity prediction – SIGANEO by integrating GAN-like network with similarity network to address issues of missing values and limited data concerning neoantigen prediction.

  • Streptococcal pyrogenic exotoxin B cleaves GSDMA and triggers pyroptosis

    Gasdermins, a family of five pore-forming proteins (GSDMA–GSDME) in humans expressed predominantly in the skin, mucosa and immune sentinel cells, are key executioners of inflammatory cell death (pyroptosis), which recruits immune cells to infection sites and promotes protective immunity. Pore formation is triggered by gasdermin cleavage. Although the proteases that activate GSDMB, C, D and E have been identified, how GSDMA—the dominant gasdermin in the skin—is activated, remains unknown. Streptococcus pyogenes, also known as group A Streptococcus (GAS), is a major skin pathogen that causes substantial morbidity and mortality worldwide.

“码”上关注

深圳市新合生物医疗科技有限公司

地址:北京市昌平区生命科学园路20号院1号楼3层





文章
  • 文章
  • 产品
  • 商铺
  • 论坛
  • 视频
搜索

网站:www.neocura.com.cn

邮箱:info@neocura.net


        



深圳市龙华区清湖路48号明腾中心大厦809室





广州市黄埔区连云路388号B座10层

bd@neocura.net(合作)


 pr@neocura.net(媒体)

技术支持: 恒基联合 | 管理登录
seo seo